skip to main content
Sign in
Subscribe
Topics
The Big Story
Election 2020
Artificial Intelligence
Biotechnology
Blockchain
Climate Change
Computing
Humans and Technology
Tech Policy
Silicon Valley
Smart Cities
Space
Magazine
Read the latest issue
Read previous issues
Subscribe to the magazine
Manage your subscription
MIT News
Special interest publications
Newsletters
Coronavirus Tech Report
Daily Briefing
Artificial Intelligence
Future Economy
Space
Weekend Reads
View all newsletters
Events
EmTech
EmTech Digital
EmTech Next
Future Compute
CyberSecure
View events video
View all events
Search + Menu
Sign in
Subscribe
Topics
The Big Story
Election 2020
Artificial Intelligence
Biotechnology
Blockchain
Climate Change
Computing
Humans and Technology
Tech Policy
Silicon Valley
Smart Cities
Space
Magazine
Read the latest issue
Read previous issues
Subscribe to the magazine
Manage your subscription
MIT News
Special interest publications
Newsletters
Coronavirus Tech Report
Daily Briefing
Artificial Intelligence
Future Economy
Space
Weekend Reads
View all newsletters
Events
EmTech
EmTech Digital
EmTech Next
Future Compute
CyberSecure
View events video
View all events
Lists
10 Breakthrough Technologies
35 Innovators Under 35
50 Smartest Companies
More
Business Lab podcast
Deep Tech podcast
Custom content
Breakthrough-to-Impact
Company
About us
Advertise with us
Careers
Insights
International editions
Policies
Editorial guidelines
Terms of service
Privacy
Cookie statement
Licensing and syndication
Account and Support
Help and FAQ
Contact us
Sign in / Create an account
Manage your account
Follow
Sustainable Energy
Printing Parts
New printing methods make it possible to create complex, durable parts for airplanes.
by
Stuart Nathan
Aug 23, 2011
After entering data from design software into this 3-D printer, engineer Chris Turner watches as it forms the hinge layer by layer. A layer of fine metal particles is spread on the printing surface, and the machine uses a beam of electrons to fuse them into solid shapes in the designated areas.
The electron beam sketches the outline of a cross-section of the part onto a thin layer of a powdered titanium alloy.
The beam completes its sweep, filling in the outline to form one layer of the part. The table supporting the fused metal then descends by 70 micrometers, and another layer of metal powder is spread on top. This process repeats until the entire part has been built.
When printing is complete, finished parts are embedded within a block of powdered metal. Only the tops of the parts are visible.
An engineer removes the leftover powder from around the printed parts. The machine shown here is a second type of 3-D printer that fuses the powder using lasers rather than electron beams.
Components begin to emerge from the block. Because the leftover powder can be reused to build more parts, the technique results in up to 95 percent less waste than machining processes.
The finished components correspond exactly to an original computer model. The parts on the left are shaped like a conventional component. The ones on the right are the same component optimized to reduce weight. The size of the parts that can be made is currently limited by the size of the cavity inside the 3-D printer. Scaling up the process to print large parts could involve a printing head mounted on a crane that would deposit powder and melt it at the same time, using a laser or an electron beam.
Author
Stuart Nathan
Popular
01.
How the nature of cause and effect will determine the future of quantum technology
From our advertisers
In association with
Intel
Getting smart about the future of AI
Intel
Autonomous driving: Safety first
Produced in association with
IBM
Optimizing the engineering life cycle requires digital transformation
Advertisement
Topics
The Big Story
Election 2020
Artificial Intelligence
Biotechnology
Blockchain
Climate Change
Computing
Humans and Technology
Tech Policy
Silicon Valley
Smart Cities
Space
Follow
Subscribe