skip to main content
Sign in
Subscribe
Topics
The Big Story
Election 2020
Artificial Intelligence
Biotechnology
Blockchain
Climate Change
Computing
Humans and Technology
Tech Policy
Silicon Valley
Smart Cities
Space
Magazine
Read the latest issue
Read previous issues
Subscribe to the magazine
Manage your subscription
MIT News
Special interest publications
Newsletters
Coronavirus Tech Report
Daily Briefing
Artificial Intelligence
Future Economy
Space
Weekend Reads
View all newsletters
Events
EmTech
EmTech Digital
EmTech Next
Future Compute
CyberSecure
View events video
View all events
Search + Menu
Sign in
Subscribe
Topics
The Big Story
Election 2020
Artificial Intelligence
Biotechnology
Blockchain
Climate Change
Computing
Humans and Technology
Tech Policy
Silicon Valley
Smart Cities
Space
Magazine
Read the latest issue
Read previous issues
Subscribe to the magazine
Manage your subscription
MIT News
Special interest publications
Newsletters
Coronavirus Tech Report
Daily Briefing
Artificial Intelligence
Future Economy
Space
Weekend Reads
View all newsletters
Events
EmTech
EmTech Digital
EmTech Next
Future Compute
CyberSecure
View events video
View all events
Lists
10 Breakthrough Technologies
35 Innovators Under 35
50 Smartest Companies
More
Business Lab podcast
Deep Tech podcast
Custom content
Breakthrough-to-Impact
Company
About us
Advertise with us
Careers
Insights
International editions
Policies
Editorial guidelines
Terms of service
Privacy
Cookie statement
Licensing and syndication
Account and Support
Help and FAQ
Contact us
Sign in / Create an account
Manage your account
Follow
Intelligent Machines
Rocket Road
SpaceX wants to become the commercial heir to NASA.
by
Brittany Sauser
Apr 19, 2011
When NASA stops flying the space shuttles later this year, the United States will no longer have a vehicle to carry humans to space—unless commercial industry can fill the gap. Last year, Space Exploration Technologies (SpaceX) became the first company to send a spacecraft into low Earth orbit and have it reënter the atmosphere. The flight is part of a partnership with NASA, which has awarded SpaceX $1.6 billion for at least 12 flights to carry cargo to the International Space Station. But SpaceX’s goal is something far greater: a NASA contract to carry humans to space.
Preparing for its first test flight, the Falcon 9 rocket sits at SpaceX’s launch site in Cape Canaveral, Florida (above). Approximately 55 meters tall and four meters wide, the two-stage rocket is powered by nine hydrocarbon Merlin engines. It is made of an aluminum-lithium alloy and a carbon fiber–aluminum composite.
Here, a carbon-composite interstage of the rocket is shown undergoing final assembly in California. The four black containers hold parachutes used to return the first stage of the rocket to Earth after separation from the second stage, which carries the vehicle to its targeted orbit.
SpaceX carries out more than 80 percent of its spacecraft design and manufacturing in a 550,000-square-foot facility (above) located on Rocket Road in Hawthorne, California. The company, which was founded in 2002, moved into the building in 2008. Here, engineers work on the avionics and control systems for the Falcon 9 rocket.
The Merlin engine (above) operates on a gas-generator power cycle, using kerosene and liquid oxygen as propellants. Its injector design was first used in an Apollo spacecraft and has a long history of reliable spaceflight. The engine’s combustion chamber and nozzles are regeneratively cooled to increase thrust without increasing mass.
SpaceX’s capsule for carrying cargo and crew to space is named Dragon. It will use as many as 18 thrusters for orbital maneuvering and attitude control. The thrusters are mounted on the spacecraft in groups of four and five. Here, an engineer inspects the thrusters, which were fabricated in a clean room, before they are sent to SpaceX’s testing facility in Texas.
The California facility houses an engineering model of the Dragon (above). The reusable capsule can transport payloads of up to 6,000 kilograms and seven crew members to low Earth orbit. To carry humans, it will include life-support and launch-abort systems.
SpaceX’s second Dragon test capsule (above, under construction) is scheduled to fly later this year.
The Dragon capsule’s heat shield is intended to protect the spacecraft during reëntry into Earth’s atmosphere. At nearly four meters in diameter, it is the largest such shield to be used on a spacecraft. It has a carbon-composite structure, shown here, that supports heat-shield tiles. SpaceX worked closely with NASA to develop the tile technology. Each tile weighs about a kilogram and can withstand temperatures up to 2,000 degrees Celsius.
Author
Brittany Sauser
Popular
01.
How the nature of cause and effect will determine the future of quantum technology
From our advertisers
In association with
Intel
Getting smart about the future of AI
Intel
Autonomous driving: Safety first
Produced in association with
IBM
Optimizing the engineering life cycle requires digital transformation
Advertisement
Topics
The Big Story
Election 2020
Artificial Intelligence
Biotechnology
Blockchain
Climate Change
Computing
Humans and Technology
Tech Policy
Silicon Valley
Smart Cities
Space
Follow
Subscribe