Silicon Valley may soon have to change its name. A team of scientists led by Matthias Schreck of the University of Augsburg in Germany has developed a crystalline diamond film that could produce more resilient semiconductor chips than those made from silicon. Until now, synthetic diamonds have proved a poor semiconducting material. Their microscopic crystals are a disorderly hodgepodge, and their edges are not evenly aligned, impeding the flow of current. Now, Schreck and his colleagues have discovered that by growing the diamond film on a surface of iridium, instead of on silicon, they can keep its grain boundaries aligned. Adding atoms of boron or nitrogen enables the diamond film to conduct electricity. Manufacturers plan to build a diamond chip that can withstand temperatures of 500 C, compared to only about 150 C for silicon chips. The chips would be most useful in devices located near hot-burning engines, such as those used in automobiles or airplanes.