Ritu Raman
27
MIT
Country of birth: India
She’s developed inchworm-size robots made partly of biological tissue and muscle
Ritu Raman’s robots are made out of both polymers and muscle tissue, and are capable of sensing their environment and recognizing temperature, pH, and mechanical pressure.
“I’m a mechanical engineer by training, and I’m honestly a little bored building with the materials we’ve been building with for the past thousand years. So I’m making robots and machines that use biological materials to move and walk around and sense their environment, and do more interesting things—like get stronger when they need to and heal when they get damaged.”
Raman has built 3D printers capable of patterning living cells and proteins, injecting those into a mold where the cells self-assemble into dense muscle tissue. The tissue is then transferred to a robotic skeleton. The robots, powered by living skeletal muscle, move in response to light or electricity.
Right now, they look a bit like inchworms, but that’s just the proof of concept. “Can we make new ‘biohybrid’ implants for drug delivery that adapt to your body better than purely synthetic implants could?” Raman says. “Can we release robots into a polluted water supply and have them walk toward a toxin and exude a chemical to neutralize that?”